
  

AFRL-IF-RS-TR-2006-87 
Final Technical Report 
March 2006 
 
 
 
 
 
 
CLUTTER MEASUREMENT AND REDUCTION FOR 
ENHANCED INFORMATION VISUALIZATION 
 
Worcester Polytechnic Institute 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 



  

STINFO FINAL REPORT 
 

This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 

AFRL-IF-RS-TR-2006-87 has been reviewed and is approved for publication. 
 
 
 
 
 
 
 
 
APPROVED:            /s/ 
   
 

TYRONE J. BALMACEDA, 2Lt., USAF
Project Engineer 

     
     
 
 
 
 
 
 
 
 
 FOR THE DIRECTOR:              /s/ 
          
 
 

JAMES W. CUSACK  
Chief, Information Systems Division 
Information Directorate  

     
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 

maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
MARCH 2006

3. REPORT TYPE AND DATES COVERED 
Final Sep 2004 –  Dec 2005 

4. TITLE AND SUBTITLE 
CLUTTER MEASUREMENT AND REDUCTION FOR ENHANCED 
INFORMATION VISUALIZATION 

6. AUTHOR(S) 
 
Natasha Lloyd  

5.  FUNDING NUMBERS 
C    - FA8750-04-C-0285 
PE  - N/A  
PR  - NASA 
TA  -  BA 
WU -  04 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Worcester Polytechnic Institute 
100 Institute Road 
Worcester Massachusetts  01609-2247 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

N/A 
 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory/IFSB 
525 Brooks Road 
Rome New York 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2006-87 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:    Tyrone J. Balmaceda/IFSB/( 315) 330-2115      Tyrone.Balmaceda@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
The effectiveness of information visualization largely depends on the ease and accuracy with which users can access 
the information.  Visual clutter in a display can detract from a users’ ability to properly read the information.  An ideal 
visualization needs to maximize the visibility of patterns and structure and minimize the clutter present.  Thus far, there 
has been little work done in finding quantitative ways to measure clutter in formation visualization.  The goal of this 
project was to create clutter measurement and reduction techniques which minimize the presence of visual clutter and 
maximize a users’ ability to accurately read the data.  

15. NUMBER OF PAGES
53

14. SUBJECT TERMS  
Information Visualization, air traffic management, congestion, delay, correlations, 
simulation, capacity enhancement. 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



 

i 

Table of Contents 
 

1 Introduction..............................................................................................................1 
2 Defining Visual Clutter............................................................................................5 
3 Task Analysis...........................................................................................................7 
4 Clutter Measurement..............................................................................................10 
5 Clutter Reduction...................................................................................................21 
6 Evaluation Results .................................................................................................36 
7 Conclusions............................................................................................................45 
8 Further Work..........................................................................................................46 

      References....................................................................................................................47 
 

List of Figures 
 

Figure 1:  Visualizations used for this project .....................................................................4 
Figure 2:  Close-up of Ants 3D with bounding boxes .......................................................19 
Figure 3:  One-tone gradient applied to all visualizations .................................................22 
Figure 4:  Rainbow gradient applied to all visualizations..................................................24 
Figure 5:  Opacity gradient applied to all visualizations ...................................................25 
Figure 6:  Comparison of features visible with a one-tone gradient versus the features        

visible with an opacity gradient .......................................................................26 
Figure 7:  Pre-set views 1-4 used for camera angle optimization......................................27 
Figure 8:  Pre-set views 5-8 used for camera angle optimization......................................28 
Figure 9:  Altitude layers filter applied to Ants visualization............................................30 
Figure 10:  Altitude layers filter applied to Ants 3D visualization....................................31 
Figure 11:  Proximity layers filter applied to Ants visualization.......................................32 
Figure 12:  Proximity layers filter applied to Ants 3D visualization.................................33 
Figure 13:  Proximity layers filter applied to Cityscape visualization...............................34 
Figure14:  Screenshot of the clutter measurement section of the online evaluation  
                  survey...............................................................................................................37 
Figure 15:  Amount of clutter present in all visualizations................................................38 
Figure 16:  Density measurements.....................................................................................38 
Figure 17:  Density measurements.....................................................................................39 
Figure 18:  Density measurements.....................................................................................39 
Figure 19:  Ants:  Effectiveness of clutter reduction .........................................................41 
Figure 20:  Ants 3D:  Effectiveness of clutter reduction ...................................................41 
Figure 21:  Cityscape:  Effectiveness of clutter reduction.................................................41 
Figure 22:  Metaballs:  Effectiveness of clutter reduction.................................................42 
Figure 23:  Circles:  Effectiveness of clutter reduction .....................................................42 
Figure 24:  Sunburst:  Effectiveness of clutter reduction ..................................................42 
Figure 25:  Task-Based Evaluation:  Locating busy areas.................................................44 
Figure 26:  Task-Based Evaluation:  Identifying traffic routes .........................................44 
Figure 27:  Task-Based Evaluation:  Measuring air traffic volume...................................44  



1 Introduction

The effectiveness of information visualization largely depends on the ease and accuracy
with which users can access the information. Visual clutter in a display can detract from a
users ability to properly read the information. This hindrance can have significant conse-
quences when visualizations are used to make decisions affecting human lives. For instance,
visualizations are used to evaluate new air traffic control systems whose aim is to reduce
traffic and maintain safe air transportation [1]. These visualizations need to maximize the
visibility of patterns and structure and minimize the clutter present.

Visual clutter can take on many forms and it largely depends on the tasks that are being
performed with the visualizations. In this document we will discuss three types of clutter:

• Density - the number of objects present relative to the amount of display space avail-
able;

• Outliers - data points that significantly vary from the majority of all data points; and

• Occlusion - objects that either overlap other objects or obstruct other objects from
view.

The goal of this project was to create clutter measurement and reduction techniques which
minimize the presence of clutter and maximize a users ability to accurately read the data.

The need for better quantitative visualization quality measures has been documented in
[13], where the authors posed the following question to the research community:

How can we measure the ”goodness” of a particular or combined visualization?

Although some visualization quality metrics have been proposed in such publications as
[21, 22, 23, 29], there has been surprisingly little work done in finding quantitative ways
to measure visualization quality. In [3], Brath expanded on the metrics proposed by Tufte
in [21, 22, 23] by including issues that affect 3D visualizations. While these are good as a
general framework, they do not always apply as measurements of visualization quality.

Clutter measurement techniques are most useful when designing and evaluating different
visualizations. Edward Tufte writes in [22]:
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Clutter and confusion are failures of design, not attributes of information.

This is a widely recognized truth in the field of information visualization and there has
been a considerable amount of work done in design techniques which reduce clutter and
confusion. Popular clutter reduction methods include similarity clustering [2, 6], shifting
from 2D to 3D displays [2, 6], sampling [5], and user interaction [1, 6, 8, 28, 29]. The latter
is perhaps the most commonly used method because it gives the user control over which
information is more or less visible under the assumption that the user knows what to look
for. This is not always a valid assumption, however, since users will find best views through
trial and error and may miss something that could be important through that process.

Clutter reduction techniques can be grouped into the following three categories:

• Information preserving,

• Information reducing, and

• Remapping.

Information preserving techniques display all data points available and modify some dis-
play attributes, such as opacity or camera angle [6], to produce the least cluttered view.
Information reducing techniques remove some data points and aim to find a balance be-
tween loss of information and clutter reduction. Such methods of information reduction
include filtering/sampling [5, 28], distortion [12, 18], and multi-resolution [8, 26, 27]. Fi-
nally, remapping maps a data set onto several different visualizations, each of which has
different advantages and disadvantages. Figure 1 shows the sample air traffic data set used
in this project mapped to six different visualizations.

We have developed several different clutter reduction techniques for each of the three cate-
gories:

• Information preserving:

– One-tone gradient

– Rainbow gradient

– Opacity gradient

– Camera angle optimization

• Information reducing:
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– Altitude filtering

– Proximity filtering

• Remapping:

– Ants visualization

– Ants 3D visualization

– Cityscape visualization

– Metaballs visualization

– Circles visualization

– Sunburst visualization

The details of our clutter measurement and reduction techniques are presented in this
document. We also present the results of a user evaluation survey that was performed and
suggest ideas for further work.
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(a) Ants: Every airplane is repre-
sented by an icon. Here, the icon is
simply a dot.

(b) Ants3D: Airplanes are repre-
sented as arrows at the latitude,
longitude, and altitude location
pointing in the direction the air-
plane is heading.

(c) Cityscape: The view is divided
into a grid of user-specified size
(above, 25 mi2). The bars repre-
sent the volume of traffic at each
grid square.

(d) Metaballs: Each active airport
is represented by a metaball whose
radius represents the volume of traf-
fic at that airport.

(e) Circles: A simplified version of
the metaballs visualization, where
each active airport is shown as a cir-
cle whose radius represents the vol-
ume of traffic at that airport.

(f) Sunburst: Every airport is a dot
with rays for every moving aircraft
within a certain distance of the air-
port. The rays point in the direc-
tion that the aircraft is traveling.

Figure 1: Visualizations used for this project

10

cameras
Text Box
4



2 Defining Visual Clutter

Since clutter is a term that is found in many different disciplines, it often holds different
meanings. In radar applications, for instance, clutter can be associated with signals or
echoes on radar that interfere with desired signals. Things such as mountains, vehicles,
water, and birds can cause radar clutter by interfering with signals that are being observed
[10]. Another example is verbal clutter, which occurs when there are more words and ideas
present than a person can process. This may lead to mental information overload and
hinder a person’s understanding of the problem at hand [7]. Other examples of clutter exist
in fields such as computer vision [9, 14], advertising [17], and Human-Computer Interaction
[15].

In information visualization, the definition for clutter remains vague. In many cases, clutter
is simply referred to as the number of objects present [27] [need more]. However, many
visualization researchers also acknowledge that clutter is about more than just density.
Edward Tufte [21, 22, 23] discusses clutter as anything that causes confusion in a visual
display of information. In fact, according to Tufte, large amounts of data do not always cause
clutter; it is, rather, failures in the design of the visual display that can create confusion.
Some sources of clutter identified by Tufte include:

• ineffective display of data density

• poor layout decisions

• strong contrast

• bad use of color

• chartjunk, such as extra lines, emphasizing unimportant information, and using un-
necessary icons

When we look at how clutter is defined in the above-mentioned examples, and specifically
in information visualization, we see that it often depends on personal judgement. What is
clutter to one person may not be clutter to another person. There does exists a general
idea of clutter, however, which needs to be expressly defined.

Ruth Rosenholtz [15] suggested the following definition of clutter for scientific exploration:

Clutter is the state in which excess items, or their representation or organization,
lead to a degradation of performance at some task.
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This definition is meant for a specific application of the term clutter and relies heavily on
the concept of clutter as an excess of something. This may not always be the case in other
applications, however. In the radar example mentioned earlier, for instance, clutter has
nothing to do with the quantity of objects, but rather with the types of objects. In some
displays, even outliers that are sparsely distributed can create clutter by adding unnecessary
information that can confuse the user.

A common thread in all the applications is that clutter is something that causes confusion.
It can do so in many ways – by drawing attention to unimportant information, by making
it difficult to distinguish individual points, by littering a display with extraneous objects, or
by making information difficult to see. The specific ways in which clutter causes confusion
vary from one application to another, but the concept of clutter remains similar throughout
all fields.

Taking this into consideration, I propose the following, more general, definition of clutter,
which will be used throughout this document:

Definition:
Clutter is a state of confusion which degrades both the accuracy and ease of
interpretation of information displays.

12
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3 Task Analysis

3.1 Classifying Visualization Tasks

In order to understand which attributes of a visualization can lead to confusion, it is impor-
tant to understand the types of tasks that users can perform with the visualization. In some
cases, visualizations are developed for domain-specific tasks [20]. However, many studies
have been done in an effort to evaluate and classify more general types of tasks that users
perform with visualization tools.

There have been several different approaches taken to classify tasks. One such approach,
proposed by Chuah and Roth [4] looks at tasks performed when accessing and exploring
data. Chuah and Roth categorized visualization tasks into three groups:

• Graphical operations, which are actions a user can perform on the graphical attributes
of a display, such as encoding data through different mappings and transforms and
manipulating objects;

• Set operations, where the user creates and manipulates sets of objects; and

• Data operations, which deal directly with the data being visualized.

Wehrend and Lewis [24] described another possible set of visualization tasks, containing the
following steps that a user can perform to analyze a data set:

• Identify, where the user describes an item in a data set without previous knowledge;

• Locate, where the user finds an item in a data set with previous knowledge of the
item;

• Distinguish, where a user can see different objects as distinct visual entities;

• Categorize, where a user can describe objects as belonging to different categories;

• Cluster, where a user can see objects that belong to similar categories grouped to-
gether;

• Distribute, where a user specifies categories and objects belonging to them are dis-
tributed among them;

• Rank, where a user is can identify an order to how the objects are displayed;
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• Compare, where a user compares data items based on their attributes;

• Associate, where a user establishes relations between objects displayed; and

• Correlate, where a user observes shared attributes among objects.

Other ways to characterize tasks have been explored in works such as [16, 19, 25]. Many of
the tasks identified, however, only deal with information retrieval and exploration. Other
studies have focused on the thought-process of the users.

In [11] Hibino performed a study with visualization experts, where the subjects were in-
structed to perform analysis of a data set on tuberculosis using a visualization tool. Al-
though only five people were included in the study, Hibino extracted the following high-level
tasks from observing and interviewing the subjects:

• Prepare, which includes gathering/learning data background information and other
preparation tasks to get the data ready for analysis;

• Plan, which includes creating a hypothesis and coming up with a strategy;

• Explore, where the user gets familiar with the data set by investigating it in various
manners;

• Present, which includes the organization or ranking of data;

• Overlay, when the user compares various notes and displays to assess his observations;

• Re-orient, where goals and progress are reviewed; and

• Other, which can include things like gathering statistics.

All the efforts to identify the tasks that users perform when working with a visualization
attempt to help with the evaluation of visualizations. If we have a firm grasp on what users
want to do, we can then empirically assess the quality and appropriateness of different
visualizations.

3.2 Identifying Air Traffic Visualization Tasks

In terms of visual clutter, it is important to be aware of how a visualization will be used when
identifying the types of clutter present. Depending on the visualization’s purpose, different
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attributes may cause confusion that degrades the accuracy and ease of interpreting the
information presented.

Throughout this document, a sample data set will be presented as a case study for the
subject of visualization quality. This data set contains geographical information about air
traffic throughout the United States and was provided by the Air Force Research Labs.

Defining the types of tasks that may be performed was the first step in the analysis of the
sample air traffic data set. Since little guidance was given with regard to how the visualiza-
tions will be used, we performed our own evaluation based on three sample visualizations
that were provided. We identified the following possible tasks and features of interest in
the visualizations:

• Ants:

– Location of airports/hubs

– Busy areas without airports

– Popular destinations and origins

– Air traffic routes

– Air traffic volume

– Overlapping aircraft

– Effects of time progression

– Rate of change of traffic volume

• Cityscape:

– Location of airports/hubs

– Busy areas without airports

– Air traffic routes

– Air traffic volume

– Effects of time progression

– Rate of change of traffic volume

• Metaballs:

– Busy areas

– Air traffic volume

– Effects of time progression

– Rate of change of traffic volume

15
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4 Clutter Measurement

The need for better quantitative visualization quality measures has been documented in
[13], where the authors posed the following question to the research community:

How can we measure the ”goodness” of a particular or combined visualization?

Although some visualization quality metrics have been proposed in such publications as
[21, 22, 23, 29], there has been surprisingly little work done in finding quantitative ways
to measure visualization quality. In [3], Brath expanded on the metrics proposed by Tufte
in [21, 22, 23] by including issues that affect 3D visualizations. While these are good as a
general framework, they do not always apply as measurements of visualization quality.

Quality measurement metrics are heavily dependent on each specific visualization and on
the tasks that are being performed with that visualization. For instance, both Tufte and
Brath claim that visualizations with more data presented per square centimeter are more
effective. This is true when we assume that the viewer is interested in seeing the whole
picture. However, if one’s task is to identify certain aspects of individual data points,
having clusters of data may prevent this task from being performed effectively.

Based on our definition of clutter, which we developed in section 2, visualization quality is
closely tied to the amount of clutter present. Since clutter is defined as a state of confusion
that degrades the ease and accuracy of interpretation of information displays, saying that
a visualization is cluttered is equivalent to saying that a visualization is of poor quality.

The first step we took in developing clutter measurement techniques for the air traffic data
set was look at several sample visualizations to identify possible tasks and aspects that could
prevent the user from performing those tasks. The table below lists the possible sources of
clutter we identified and their presence in each of the three sample visualizations.

Ants Cityscape Metaballs
Outliers X X
Density X X
Occlusion X X
Color X X X
Chartjunk X X X

In the table above, the following definitions were used for each source of clutter:

16
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• Outliers - data points that significantly vary from the majority of all data points

• Density - the number of objects present relative to the amount of display space avail-
able

• Occlusion - objects that either overlap other objects or obstruct other objects from
view

• Color - the number of distinct colors present

• Chartjunk - elements of a display that are unnecessary and distracting [21]

For this project, we chose to focus on outliers, density, and occlusion, which are discussed in
detail below. Both color and chartjunk were taken into consideration when designing new
visualizations and improving existing ones, but they were not measured in a quantitative
way.

4.1 Density

In general terms, density is the number of data points per unit of space. Depending on the
visualization that is being used, the number of objects may vary. We will now go over the
density measures used in this project in detail.

The following variables and functions are common to all visualizations:

// updated every frame:
i← current frame number
data← {all airplanes at frame i}
grid← GET FILLED GRID(data)

// global variables:
nmax

m

GET FILLED GRID(data)

r ← number of rows in grid
c← number of columns in grid
for i← 1 to r

for j ← 1 to c

grid[i][j]← {∅}
for every airplane a ∈ data

17
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for i← 1 to r

for j ← 1 to c

if location of a is within coordinates of grid[i][j]
then grid[i][j]← grid[i][j]

⋃
{a}

return grid

GET FILLED AIRPORTS(data)

airports← {all airports}
for every airport p ∈ airports

p← {∅}
t← user defined threshold
for every airport p ∈ airports

for every airplane a ∈ data

d← distance from a to p
if d < t
then p← p

⋃
{a}

return airports

Now, we will look at the specific algorithms used to compute the density of each visualiza-
tion.

Ants and Ants3D:

Here, we count the number of airplanes present and calculate the percentage of screen space
that is being used by these airplanes.

INITIALIZE()

// performed once when visualization is initialized
imax ← index when the maximum number of airplanes are present
datamax ← {all airplanes at frame imax}
nmax ← |datamax|
gridmax ← GET FILLED GRID(datamax)
r ← number of rows in gridmax

c← number of columns in gridmax

f ← 0
for i← 1 to r

18
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for j ← 1 to c

if |gridmax[i][j]| > 0
then f ← f + 1

m← f
r∗c

GET DENSITY ()

// normalized to return values ranging from 0 to 10
return 10 ∗m ∗ |data|

nmax

Cityscape:

For this visualization, we count the number of bars that are displayed and calculate the
percentage of the grid that is filled by these bars.

INITIALIZE()

// performed once when visualization is initialized
imax ← index when the maximum number of airplanes are present
datamax ← {all airplanes at frame imax}
nmax ← 0
gridmax ← GET FILLED GRID(datamax)
r ← number of rows in gridmax

c← number of columns in gridmax

for i← 1 to r

for j ← 1 to c

if |gridmax[i][j]| > 0
then nmax ← nmax + 1

m← nmax
r∗c

GET DENSITY ()

r ← number of rows in grid
c← number of columns in grid
n← 0
for i← 1 to r

for j ← 1 to c

if |grid[i][j]| > 0
then n← n + 1
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// normalized to return values ranging from 0 to 10
return 10 ∗m ∗ n

nmax

Circles and Metaballs:

Both of these visualizations display airports, so the algorithm below counts the number of
active airports and approximates the percentage of screen space being used.

INITIALIZE()

// performed once when visualization is initialized
imax ← index when the maximum number of airplanes are present
datamax ← {all airplanes at frame imax}
nmax ← |{all airports}|
gridmax ← GET FILLED GRID(datamax)
r ← number of rows in gridmax

c← number of columns in gridmax

f ← 0
for i← 1 to r

for j ← 1 to c

if |gridmax[i][j]| > 0
then f ← f + 1

m← f
r∗c

GET DENSITY ()

airports← GET FILLED AIRPORTS(data)
n← 0
for i← 1 to |airports|

if |airports[i]| > 0
then n← n + 1

// normalized to return values ranging from 0 to 10
return 10 ∗m ∗ n

nmax

Sunburst:

Here we count the number of rays being displayed and approximate the amount of screen
space taken up by those rays.
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INITIALIZE()

// performed once when visualization is initialized
imax ← index when the maximum number of airplanes are present
datamax ← {all airplanes at frame imax}
airports← GET FILLED AIRPORTS(datamax)
nmax ← 0
for i← 1 to |airports|

nmax ← nmax + |airports[i]|
gridmax ← GET FILLED GRID(datamax)
r ← number of rows in gridmax

c← number of columns in gridmax

f ← 0
for i← 1 to r

for j ← 1 to c

if |gridmax[i][j]| > 0
then f ← f + 1

m← f
r∗c

GET DENSITY ()

airports← GET FILLED AIRPORTS(data)
n← 0
for i← 1 to |airports|

n← n + |airports[i]|
// normalized to return values ranging from 0 to 10
return 10 ∗m ∗ n

nmax

From the pseudocode above, we can see that the way density is computed is similar to
all visualizations. The differences come in counting the number of objects present because
each visualization displays different types of objects. For instance, Ants displays individual
airplanes, while Cityscape displays bars representing air traffic over a certain area. In
general, however, the density always represents the amount of display space covered by the
objects displayed. Although this is not exactly the definition of density that is normally
used, it does give a good approximation that mostly agrees with user opinions (see Section
6).
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4.2 Outliers

Outliers are defined as data points that significantly vary from the majority of all data.
Similar to density, the way outliers are measured is dependent on the type of visualization
that is being used. In all cases, outlier calculation requires some user-defined threshold that
represents the deviation point when a data point becomes an outlier. For instance, we may
want outliers to be airplanes that are distance x away from other airplanes. We will now
discuss the outliers measurements that were used for this project by looking at individual
visualizations.

(See section 4.1 for variables and functions that are common to all visualizations.)

Ants and Ants3D:

Several possibilities for measuring outliers were considered for these two visualizations. The
first possibility was a nearest-neighbor approach, where an object would be considered an
outlier if its nearest neighbor was too far away (as defined by the user). While this approach
would certainly find some outliers, it would not take into consideration cases where two
airplanes are traveling close to each other but far away from all other airplanes. To a user,
these airplanes would most likely appear as outliers, but the measurement method would
not classify them as such.

The second possibility was a density-based approach, where an object would be considered
an outlier if it had too few neighbors (again, as defined by the user). This approach
takes care of the problem with the nearest-neighbor method, but could be computationally
expensive since it would have to calculate the number of neighbors for each object. This
would take O(n2) time because each object would need to be compared with every other
object.

The third possibility, and the one that was selected for this project, is an optimization on
the density-based approach, which utilizes the grid that is already used in the visualizations.
In this approach, the screen is divided into a grid of user-defined size and the grid is filled
in with airplanes that belong to each grid square. Then, the algorithm looks at each grid
square to see how many airplanes are present and if the number is less than a user-defined
threshold, all airplanes in that square are considered outliers. This approach is a bit faster
than the pure density-based approach because the size of the grid is generally smaller than
the number of airplanes and so fewer comparisons need to be made. Although this method
has the added cost of filling the grid, this is negligible since the grid is filled at every frame
anyway for other purposes, such as determining the color of airplanes.
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GET NUM OUTLIERS()

r ← number of rows in grid
c← number of columns in grid
n← 0
t← user-defined threshold (number of airplanes per grid square)
for i← 1 to r

for j ← 1 to c

if |grid[i][j]| < t
then n← n + |grid[i][j]|

// normalized to return values ranging from 0 to 10
return 10 ∗ n

|data|

Cityscape:

For this visualization, an outlier is a grid square that has too few airplanes over it. The
number returned by the algorithm before is the fraction of outliers to the total grid space
available.

GET NUM OUTLIERS()

r ← number of rows in grid
c← number of columns in grid
n← 0
t← user-defined threshold (number of airplanes per grid square)
for i← 1 to r

for j ← 1 to c

if |grid[i][j]| < t
then n← n + 1

// normalized to return values ranging from 0 to 10
return 10 ∗ n

r∗c

Circles, Metaballs, and Sunburst:

All three of these visualizations display airports, so here, outliers are airports with too few
airplanes within a user-specified distance of them. This distance is specified in the function
GET FILLED AIRPORTS() (see section 4.1).

GET NUM OUTLIERS()
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n← 0
a← 0
airports← GET FILLED AIRPORTS(data)
t← user-defined threshold (number of airplanes per airport)
for i← 1 to |airports|

if |airports[i]| > 0
then a← a + 1

if |airports[i]| < t
then n← n + 1

// normalized to return values ranging from 0 to 10
return 10 ∗ n

a

The definitions of outliers used above are just one set of possibilities. Depending on the
tasks that a user is trying to perform with a visualization, it may make sense to redefine
outliers to get a different measurement. For instance, in the Circles, Metaballs, and Sunburst
visualizations, outliers could be defined as airports that are not close to any other airports.
In other words, an outlier is a term that is relative to the aspect of the data which is most
important to the user.

4.3 Occlusion

Occlusion occurs when objects obstruct other objects from view in both 2D and 3D displays.
In 2D occlusion is caused by overlapping objects, while in 3D it is caused by objects that
are closer to the camera covering objects that are further away. In both cases, accurate
occlusion measures are costly and not practical for animated visualizations. Because of this
we created occlusion measures that are approximations of the total occlusion present. For
the purposes of most clutter reduction, the estimates calculated by our technique are good
enough to judge the quality of a visualization.

The pseudocode below describes how occlusion measurement was performed for the different
visualizations.

2D Visualizations:

For Ants, Circles, and Sunburst, occlusion was measured based on the distance between
objects. If two objects are too close, then one of them is occluded. The specific objects vary
between the visualizations, but in all cases, a 2D point location can be used to identify the
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objects, so we will only present one version of the pseudocode to give a general idea. For
Ants, the point used is the latitude/longitude location of each aircraft; for Circles, it is the
center of each circle; and for Sunburst, it is the location of each airport. Although Metaballs
is a 2D visualization, the occlusion measurements do not apply to it because there is no
occlusion possible in this visualization.

GET NUM OCCLUSIONS()

n← 0
for every object a1

for every other object a2

if DISTANCE(a1, a2) > 0.001
n← n + 1

return n

3D Visualizations:

Occlusion measurement for 3D visualizations is a bit more complex than its 2D counterpart.
Every object in a 3D visualization can be represented with a bounding box. For Cityscape,
the bars themselves are bounding boxes. For Ants 3D, each airplane can be defined with a
box that is centered at the location of the airplane and completely encloses it (see Figure 2).

Figure 2: Close-up of Ants 3D with bounding boxes.

Using these bounding boxes, our occlusion measurement extends a ray from the camera to
the XZ-plane through the center of each bounding box and checks for other boxes that are
close to or intersect that ray. It does this in a way similar to the 2D occlusion measure by
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checking the distance from each box to the ray, but instead of checking the distance between
two points, this method checks the distance between a point and a line. The pseudocode
for this method follows.

GET NUM OCCLUSIONS()

c← camera position
n← 0
for every object a1

// calculate the point of intersection with XZ-plane
v ← a1 − c
t← a1.y

v.y
p← a1 + t ∗ v
l← line from a1 to p
for every other object a2

if DISTANCE(l, a2) < SIZEOF (a2)
2

then n← n + 1

return n

As mentioned earlier, this is just an approximation of the actual number of occlusions.
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5 Clutter Reduction

Since the quality of a visualization is based on how easily a user can obtain useful information
from the display, it is important to develop techniques that reduce the clutter present.
Generally, these techniques fall into three categories:

• Information Preserving - all objects are displayed on the screen and attributes such
as color, opacity, and camera angle are used to reduce the amount of clutter present.

• Information Reducing - some objects may not be displayed and data may be altered
in order to reduce clutter.

• Remapping - data is visualized in several different ways, with each mapping having
its own advantages and disadvantages.

We have developed clutter reduction methods that fall into all three categories and we
discuss them in detail below.

5.1 Information Preserving Methods

Methods that preserve information do not change any attributes of the original data. For
this project, we developed four such methods, which include using color gradients, an opacity
gradient, and a camera angle optimization technique.

5.1.1 One-tone Gradient

A one-tone gradient (see Figure 3) is a range of colors that blend the foreground color into
the background color. In our visualizations, the one-tone gradient represented the following:

• Ants and Ants3D - Airplanes in heavy traffic grid squares are colored brighter (closer
to the foreground color) than those in lighter traffic grid squares. The grid system
was used to speed up computation.

• Cityscape - Bars that represent grid squares with heavy traffic were colored brighter
than those with lighter traffic.
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(a) Ants (b) Ants3D

(c) Cityscape (d) Circles

(e) Metaballs (f) Sunburst

Figure 3: One-tone gradient applied to all visualizations
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• Circles, Metaballs, and Sunburst - Airports that have more airplanes within some user-
defined distance of them are colored brighter than those that have fewer airplanes in
their proximity.

5.1.2 Rainbow Gradient

A rainbow gradient (see Figure 4) is similar to the one-tone gradient because it assigns
color to objects based on some attribute. However, instead of blending from the foreground
color to the background color, this technique applies a rainbow color scheme using these
colors (in order): red, orange, yellow, green, blue, purple. In our visualizations, the rainbow
gradient represented the following:

• Ants and Ants3D - Airplanes are colored based on the traffic volume in the square
where they belong (red is the highest traffic, purple is the lowest).

• Cityscape - Bars are colored based on the traffic volume in the square they represent
(red is the highest traffic, purple is the lowest).

• Circles, Metaballs, and Sunburst - Airports are colored based on the traffic volume in
their proximity (red is the highest traffic, purple is the lowest).

5.1.3 Opacity Gradient

Unlike the one-tone and rainbow gradients, an opacity gradient (see Figure 5) varies the
opacity of each object rather than the object’s color. This can be used in addition to the
color gradients or on its own. In our visualizations, the opacity gradient represented the
following (this gradient does not apply to the Metaballs visualization):

• Ants and Ants3D - Airplanes in heavy traffic grid squares are more opaque than those
in lighter traffic grid squares.

• Cityscape - Bars that represent grid squares with heavy traffic are more opaque than
those with lighter traffic.

• Circles and Sunburst - Airports that have more airplanes within some user-defined
distance of them are more opaque than those that have fewer airplanes in their prox-
imity.
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(a) Ants (b) Ants3D

(c) Cityscape (d) Circles

(e) Metaballs (f) Sunburst

Figure 4: Rainbow gradient applied to all visualizations
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(a) Ants (b) Ants3D

(c) Cityscape (d) Circles

(e) Sunburst

Figure 5: Opacity gradient applied to all visualizations
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Although the opacity gradient produces a similar effect to the one-tone gradient, it does
make certain features more visible. For instance, in the highlighted sections of Figure 6,
you can clearly see more patterns in the image with an opacity gradient applied than the
image with the one-tone gradient.

(a) One-tone Gradient (b) Opacity Gradient

Figure 6: Comparison of features visible with a one-tone gradient versus the features visible
with an opacity gradient

5.1.4 Camera Angle Optimization

In order to reduce occlusion in 3D visualizations, we explored a camera angle optimization
algorithm. This algorithm uses the occlusion measure discussed in section 4.3 to approx-
imate the amount of occlusion in a small set of pre-defined camera angles and selects the
angle with the least occlusion. We chose eight camera angles for this project, but this can
easily be expanded.

It is important to limit the angles that can be selected in order to avoid choices that may
have the least occlusion, but also show the least information. For instance, in the Cityscape
visualization a top-down view may have the least occlusion, but it also loses all the height
information which is the essence of this visualization. Figures 7 and 8 show the eight camera
angles that were available for selection by the algorithm.
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(a) View 1 (b) View 2

(c) View 3 (d) View 4

Figure 7: Pre-set views 1-4 used for camera angle optimization
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(a) View 5 (b) View 6

(c) View 7 (d) View 8

Figure 8: Pre-set views 5-8 used for camera angle optimization
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5.2 Information Reducing Methods

Another option for reducing clutter is to reduce the number of objects that are present in
the display with techniques such as clustering, sampling, and filtering. Clustering groups
objects that are close together and represents them in a way that helps the user identify
that more than one data object is present. Sampling techniques attempt to find data points
which represent the majority of the information within the entire data set. Filtering enables
users to specify the subset of data in which they are most interested and displays only that
subset. For all of these techniques, it is important that the user has control over and is
aware of the type of information reduction that is being performed. These methods try to
achieve a good balance between the amount of clutter present and the amount of information
displayed.

Due to time constraints, we only focused on filtering techniques for this project. We de-
veloped two types of filters, which were implemented as layers. If a filtering technique is
selected, all objects are divided into layers based on a certain attribute, such as altitude.
The user then has control over which layers to display. Each filtering technique is described
in detail below.

5.2.1 Altitude Layers

If the altitude layers option is selected, airplanes are grouped into 5 groups based on their
altitude. Each group, or layer, has a color associated with it and the user can select which
altitudes to display. This technique was only implemented for the Ants (Figure 9) and Ants
3D (Figure 10) visualizations because they display individual aircraft. A possible extension
on this could be done with the Cityscape visualization, where each bar could be a stack of
smaller bars representing the number of airplanes at each altitude layer.

5.2.2 Proximity Layers

Proximity layers are similar to the altitude layers, but objects are grouped based on their
proximity to some point. This is useful for coloring objects that are close to a certain
airport. This technique was applied to the Ants (Figure 11), Ants 3D (Figure 12), and
Cityscape (Figure 13) visualizations, which show objects other than airports.
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(a) All layers (b) Selected layers

(c) Key

Figure 9: Altitude layers filter applied to Ants visualization.

5.3 Remapping Methods

The same data set can be visualized in several different ways. Each visual mapping results in
a different level and distribution of clutter. In the sections below, we discuss each mapping
in more detail. See Figure 1 for images of all the visualizations.

5.3.1 Ants Visualization

In an Ants visualization, each airplane is represented as an icon on a 2D plane that is
divided into a grid. For this project, each airplane was a dot, but this can be extended to
display more descriptive icons, such as small images of the types of airplanes.

This visualization is very intuitive because it shows the geo-spacial information of air traffic
in a way that people are used to seeing. The display is essentially a projection of airplanes
onto a map of the country. This makes the visualization easy to read and easy to understand.
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(a) All layers (b) Selected layers

(c) Key

Figure 10: Altitude layers filter applied to Ants 3D visualization.

However, since all airplanes are displayed, the potential amount of clutter is high. At the
busiest time in the sample dataset, there are 3934 airplanes flying over the United States.
This is a lot of visual information and some details about individual airplanes may be lost.

5.3.2 Ants3D Visualization

In many ways, Ants 3D is similar to Ants. All airplanes are displayed as icons over a grid
of the country. However, in addition to the latitude/longitude coordinates, the altitude of
airplanes is also displayed, creating a 3D view of air traffic. In our visualization, we chose
to represent airplanes as arrows pointing in the direction the airplane is traveling.

This visualization presents the most realistic view of air traffic because it shows the actual
locations of airplanes. Unfortunately, the 3D aspect makes the view very cluttered since
users cannot easily distinguish objects that are close by from objects that are far away.
When many airplanes are present, it is nearly impossible to get any information from this
visualization.
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(a) All layers (b) Selected layers

(c) Key

Figure 11: Proximity layers filter applied to Ants visualization.

It is not completely useless, however. There is great potential for this visualization if it
is used on a smaller scale with sparse data. For instance, this would be useful if we focus
on just one airport and track only the airplanes entering and leaving the airport. In this
case, the 3D information would be very useful for air traffic control and for evaluation of
air traffic control methods around airports.

5.3.3 Cityscape Visualization

The Cityscape visualization is a 3D histogram of air traffic. It divides the country into a
grid of user-specified size and shows a bar for each grid square that has airplanes flying over
it. This visualization shows the air traffic distribution throughout the country.

With Cityscape, the 3D problems of Ants 3D are solved by having the bars clearly extend
from grid squares. This makes it easier to see spacial information and creates a less cluttered
view. Also, since each bar represents a section of the grid and not individual airplanes, there
are fewer objects present. However, occlusion is an issue in this visualization because of its
3D nature. Bars that are closer to the camera often hide shorter bars, which reduces the
accuracy of a user reading the information. This visualization is useful for tasks that do
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(a) All layers (b) Selected layers

(c) Key

Figure 12: Proximity layers filter applied to Ants 3D visualization.

not require information about individual aircraft.

5.3.4 Metaballs Visualization

The Metaballs visualization represents air traffic at each airport as a metaball whose size
depends on the volume of traffic around the airport. Airports with more traffic within their
radius are represented by larger metaballs than those with little traffic. We chose to have
a metaball for each airport in order to limit the number of metaballs we need to render.
However, this can easily be changed to have a metaball for each grid square or each aircraft.

This visualization provides a good overall picture of air traffic, but it is difficult to see any
details. Although it is useful for identifying patterns in air traffic volume, it takes a very
long time to render and thus makes it difficult to animate over time.
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(a) All layers (b) Selected layers

(c) Key

Figure 13: Proximity layers filter applied to Cityscape visualization.

5.3.5 Circles Visualization

The Circles visualization is similar to Metaballs. However, instead of using metaballs to
represent airports, this visualization uses circles whose radius depends on the amount of
air traffic near the airport. This has several advantages over Metaballs. For instance, it is
possible to see individual airports, since the circles are not filled in. Also, this visualization is
quicker to render than metaballs, though it does slow down as air traffic increases. However,
unlike Metaballs, this visualization has higher potential for clutter. Since lines are used to
outline the circles, clutter can be created when many circles overlap in one area.

5.3.6 Sunburst Visualization

The Sunburst visualization is a bit more complex than the previously mentioned visualiza-
tions. In this visualization, we start by drawing dots at every airport that has airplanes
within some user-defined distance of it. Then, for each airport, we draw rays for every
airplane in the proximity of the airport. The ray points in the direction that the airplane
is heading. It is important to note that the ray does not point from the airport to the
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airplane. This is a common misconception. The length of the ray is determined by how far
the airplane is from the airport.

This visualization can potentially get very cluttered because of number of objects being
drawn. Since multiple airports can be very close to each other, it is possible for airplanes
to be counted and drawn as rays multiple times, once for each airport. However, since the
rays would point in the same direction, this is not really a problem. Rays from airports
that are close to each other would just overlap in many cases.

The main benefit of this visualization is that it makes it easier to see flight patterns. Al-
though it currently only shows one starburst icon per airport, it can be extended to show
an icon at every grid square to show more information.
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6 Evaluation Results

Computer Science students and faculty were asked to participate in an online survey that
contained questions about visual clutter in the six visualizations used for this project. This
survey collected user opinion of clutter measurement, the effectiveness of clutter reduction,
and the ability to perform tasks using different visualizations.

The survey started by giving an introduction to the project and the problem statement.
It then collected some demographic information, such as the user’s level of education and
level of expertise in areas such as computer graphics, statistics, and air traffic control. Next,
users were provided with explanations of all the visualizations that are used throughout the
survey. There were two main sections of the survey, clutter measurement/reduction and
task-based evaluation.

Clutter Measurement:

The purpose of this section was two-fold. First, we wanted to compare users’ perception
of clutter to our measurement techniques. Second, we wanted to assess the effectiveness of
our clutter reduction methods. To achieve this, the users were given a definition of clutter
and were asked to rate images of visualizations based on how cluttered they were in terms
of density, outliers, and occlusion from 1 (least cluttered) to 10 (most cluttered). Figure 14
shows a screen shot of what the users were asked to do.

Users were shown three images of each visualization and each clutter reduction technique
that had different volumes of traffic present. This was done to put the images into context
of a changing dataset. Since the images were still, showing light, medium, and heavy traffic
volumes provided more information about how the images would actually be seen and used.

Figure 15 shows the overall clutter measured by users and by the methods described in
Section 4. User measurements mostly agreed with our algorithms’ measurements, with
a few exceptions. For instance, the Metaballs visualization was perceived as much more
cluttered than the measured values. In our algorithms, the Metaballs visualization does
not have any occlusion and the density and outliers measures are based on the number of
airports. To users, however, this visualization may seem much more cluttered because it
covers most of the display space and seems to contain a lot of information.

Figures 16, 17, and 18 show the measurements in more detail and include the trend lines for
easier comparison. From these figures, we can see that the density measurement developed
for this project is very close to user’s perception of density as clutter. The major disparity
is in the Metaballs visualization. This is likely a result of users’ perception of the mostly
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Figure 14: Screenshot of the clutter measurement section of the online evaluation survey.
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Figure 15: Amount of clutter present in all visualizations.

Figure 16: Density measurements.
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Figure 17: Density measurements.

Figure 18: Density measurements.
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filled image as clutter and the actual measure only counting individual airports without
consideration of the air traffic volume at the airports. This can be fixed by integrating
traffic volume into the density measurements for the Metaballs visualization.

There was more disparity in the outliers measurements, with the calculated clutter being
generally lower than the perceived clutter. However, as the trend lines in Figure 17 indicate,
the calculations are overall very similar to users’ perception. This can easily be calibrated
by using a different threshold value to determine outliers.

Occlusion measurements are interesting because there seem to be significant differences
between perceived and calculated values. This is likely a result of the nature of occlusion.
By definition, occlusion occurs when one cannot see something because it is blocked by other
objects. Therefore, the users were actually being asked to guess how much information was
hidden from them. If a user sees one dot on the screen, they can approximate how many
other dots may be hidden in that spot based on the surrounding density, but there is no way
to distinguish how many dots are actually hidden. Our occlusion calculation algorithms,
on the other hand, could obtain accurate measurements because they have access to all the
data, even data that is hidden from the user. In this case, it is best to rely on the calculated
numbers without adjustments since user measurements cannot be considered accurate.

Clutter Reduction:

Figures 19-24 show how users rated the clutter for each visualization with various clutter
reduction techniques applied. It is interesting to note that for the Metaballs, Circles, and
Sunburst visualizations, the users perceived little to no difference when the various clutter
reduction techniques were used. In the other visualizations, we can see the expected result
that in most cases images with clutter reduction applied were perceived less cluttered than
those without any clutter reduction. It is only in the Cityscape visualization where the
single-color gradient was thought to actually add clutter to the visualization.

Task-Based Evaluation:

For this section of the survey, users were asked to rate the visualizations based on how
effective they were for performing three tasks:

• Locating busy areas,

• Identifying traffic routes, and

• Measuring air traffic volume
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Figure 19: Ants: Effectiveness of clutter reduction.

Figure 20: Ants 3D: Effectiveness of clutter reduction.

Figure 21: Cityscape: Effectiveness of clutter reduction.
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Figure 22: Metaballs: Effectiveness of clutter reduction.

Figure 23: Circles: Effectiveness of clutter reduction.

Figure 24: Sunburst: Effectiveness of clutter reduction.
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The format for evaluation was similar to the first section, but now a rating of 10 means
the visualization is ideal for performing a task and a rating of 1 means it is impossible to
perform the task. The results of user responses are summarized in Figures 25-27.

We can see that all visualizations were perceived as good for locating busy areas and mea-
suring traffic volume, but no visualization was very good for identifying traffic routes. This
is an expected result because the users were shown static images of the data. In reality,
the users would be able to view the data animated over time and tasks such as identifying
traffic routes would become more accessible.

The users also felt that clutter reduction techniques aided their ability to perform all three
tasks. Although clutter reduction techniques were not always perceived as actually reducing
clutter, they do help users perform tasks on the visualizations by focusing their attention
on important information.
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Figure 25: Task-Based Evaluation: Locating busy areas.

Figure 26: Task-Based Evaluation: Identifying traffic routes.

Figure 27: Task-Based Evaluation: Measuring air traffic volume.
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7 Conclusions

Based on the work that was conducted for this project, it has become apparent that clutter
measurement is an open task that has potential for many different applications. Although
we only focused on the measurement of density, outliers, and occlusion, there are other
possible measures that can also be applied more generally to other visualizations. The
measurement strategies need to be tweaked for each application, but the concepts remain
the same and can be used for many visualizations.

In addition, based on the results of user evaluation, we see that measurement strategies need
to be adjusted to take more factors into consideration. For instance, the density measure
of the Metaballs visualization should be adjusted to correspond with user perception of
density. This can be accomplished by taking into consideration the area covered by the
combined metaballs surface and looking at the color brightness over this area, rather than
just counting the number of metaballs that make up the surface.

We have also seen that the effectiveness of any one clutter reduction technique depends
somewhat on the tasks being performed. If we look at the different mappings in Figures 25
and 26, it is clear that Ants and Cityscape are better for locating busy areas, while Sunburst
is better for identifying traffic routes. Here, user interaction plays an important role because
it allows the user to select tools which are most effective for the task he or she is trying to
perform.

Although there are no universal clutter measurement and reduction techniques, the methods
discussed in this document can definitely be applied to many datasets other than air traffic.
As long as there exists a spacial and temporal aspect, these methods are general enough to
apply.
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8 Further Work

The work that has been completed for this project is only the tip of the iceberg for more
detailed work that could be done, given more time.

The most pressing issue that was not addressed in this project due to time constraints is
interactive user evaluation. The web survey that was used provided some good insight into
how users perceive the visualizations, but it was missing the temporal aspect of the data
set. The visualizations are meant to be explored interactively and viewed as a progression
over time. It would be interesting to see how the animation/temporal aspect affects users’
perception of the visualizations. More importantly, interaction would affect how users
perform tasks and could have a significant effect on the perceived quality of all visualizations.

An important aspect of this project was to develop quantitative quality measures for visu-
alizations. We focused on three metrics (density, outliers, and occlusion), but it is definitely
possible to expand to more metrics. For instance, the amount of color present could be
another metric. If more information was provided about the data set, such as points of
origin, destinations, delay times, and passenger loads, then more tasks and therefore more
metrics would likely become apparent. Similarly, other mappings could be developed with
more information that could cater to the new tasks made available by more information.
There are also many clutter reduction techniques that could be implemented. For instance,
sampling could provide interesting information about the data set. With more information,
many more possibilities would be available.

Finally, the work contained in this project could be applied to other data sets. The clutter
measurement and reduction techniques discussed in this document could easily apply to
other spacial and temporal data. We had an opportunity to explore a dataset of bubble
movement in liquid while working on this project. This dataset contained the positions
of several bubbles over some period of time and it fit naturally into the framework we
were developing. There are many other possible applications for clutter measurement and
reduction, as long as there is a spacial and a temporal aspect.
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